Retail Sales Predictions:
Machine Learning Project

Welcome to our comprehensive project report on retail sales predictions
using machine learning. Our team of 12 students from B.Tech CSE 2nd Year,
Section A, led by Prerna Sharma, worked under the mentorship of Manab
Das Sir to develop predictive models for weekly retail sales.

This presentation will walk you through our methodology, data analysis,

model building process, and key findings that demonstrate how machine
learning can be applied to real-world retail scenarios for effective sales
forecasting.
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Project Overview & Objectives

|>Z<I Primary Goal % Data Sources oll Approach
Predict weekly sales of retalil Merged multiple datasets Implemented data cleaning,
stores using machine learning (features.csv, stores.csv, exploratory analysis, feature
models to assist in inventory train.csv) to create a engineering, and multiple
planning and business forecasting comprehensive analysis regression models to identify the

foundation most effective prediction method



Technical Framework & Libraries

o
NumPy & Pandas

For numerical operations,
array handling, data
manipulation and analysis
using DataFrames
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Statsmodels

For calculating Variance
Inflation Factor (VIF) to
detect multicollinearity

D

Matplotlib & Seaborn Scikit-learn

For basic plotting,
advanced visualizations
including boxplots and
heatmaps

For preprocessing, model
building (Linear
Regression, KNN, Random
Forest), and evaluation
metrics
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Data Preparation Process

Data Loading & Merging

Loaded features.csv, stores.csv, and train.csv using Pandas and merged
them on Store and Date columns to create a unified dataset for analysis

Data Cleaning

Removed unnecessary columns (Dept, Date, MarkDown1-5) to reduce
noise and eliminate duplicate columns like IsHoliday_y for consistency

Feature Engineering

Performed label encoding for categorical variables and checked for
multicollinearity using Variance Inflation Factor (VIF) to improve
model performance

Outlier Handling

Detected outliers using the IQR method and removed them to

enhance model accuracy and reliability
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Exploratory Data Analysis
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Our exploratory data analysis revealed important relationships between variables. We used boxplots to detect outliers in numeric
features and created scatter plots to visualize relationships between Weekly_Sales and factors like Temperature, CPI,
Unemployment, and Fuel_Price.

The correlation analysis showed that store Size had the highest positive correlation with Weekly_Sales (0.22), while CPI and

Unemployment showed slight negative correlations, providing valuable insights for our modeling approach.
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Key Correlation Findings

Store Size -

Temperature =

Fuel Price -

CPI 5

Unemployment -
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Model Building & Evaluation
3 0.0619 10855.12

Models Tested Best R2 Score Lowest RMSE

Linear Regression, K-Nearest Neighbors, Random Achieved by Random Forest Regressor Random Forest outperformed other models

Forest Regressor

We implemented three different regression models to predict weekly sales. The dataset was split into training and testing sets to evaluate model performance.
Each model was trained on the same data and evaluated using standard metrics including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R?

Score.

While all models showed modest predictive power, the Random Forest Regressor demonstrated the best performance across all metrics, indicating its superior

ability to capture the complex relationships in retail sales data.
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Model Performance Comparison

Model RMSE MAE R2 Score
Linear Regression 10914.82 8563.94 0.0516
K-Nearest 11508.30 8664.09 -0.0544
Neighbors

Random Forest 10855.12 8322.19 0.0619
Regressor

Our comprehensive model evaluation revealed that the Random Forest Regressor
outperformed both Linear Regression and K-Nearest Neighbors across all metrics. It
achieved the lowest RMSE (10855.12) and MAE (8322.19), indicating better prediction
accuracy.

The R2 score of 0.0619, while modest, was the highest among the three models. This
suggests that Random Forest was able to capture more of the variance in weekly sales data,
likely due to its ability to model non-linear relationships and handle feature interactions
more effectively.



Conclusions & Future Directions

Key Insights
Q Store size is the strongest predictor of weekly sales
'I Model Performance
|l
Random Forest showed best results with Rz of 0.0619

Learning Outcomes

=
Gained practical experience in ML pipeline development

Future Work
>

Feature engineering and advanced models could improve results

This project provided valuable hands-on experience in applying machine learning to retail sales prediction. While our models showed modest predictive power, they

demonstrated the potential of data-driven approaches in retail forecasting. The Random Forest model's superior performance highlights the importance of capturing non-
linear relationships in sales data.

Future work could focus on more sophisticated feature engineering, incorporating temporal patterns, and exploring ensemble methods to further improve prediction
accuracy. We extend our gratitude to our mentor Hitesh panwar for his guidance and to all team members for their dedication throughout this learning journey.



Thank You
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